40 research outputs found

    Information theoretic approach to tactile encoding and discrimination

    Get PDF
    The human sense of touch integrates feedback from a multitude of touch receptors, but how this information is represented in the neural responses such that it can be extracted quickly and reliably is still largely an open question. At the same time, dexterous robots equipped with touch sensors are becoming more common, necessitating better methods for representing sequentially updated information and new control strategies that aid in extracting relevant features for object manipulation from the data. This thesis uses information theoretic methods for two main aims: First, the neural code for tactile processing in humans is analyzed with respect to how much information is transmitted about tactile features. Second, machine learning approaches are used in order to influence both what data is gathered by a robot and how it is represented by maximizing information theoretic quantities. The first part of this thesis contains an information theoretic analysis of data recorded from primary tactile neurons in the human peripheral somatosensory system. We examine the differences in information content of two coding schemes, namely spike timing and spike counts, along with their spatial and temporal characteristics. It is found that estimates of the neurons’ information content based on the precise timing of spikes are considerably larger than for spikes counts. Moreover, the information estimated based on the timing of the very first elicited spike is at least as high as that provided by spike counts, but in many cases considerably higher. This suggests that first spike latencies can serve as a powerful mechanism to transmit information quickly. However, in natural object manipulation tasks, different tactile impressions follow each other quickly, so we asked whether the hysteretic properties of the human fingertip affect neural responses and information transmission. We find that past stimuli affect both the precise timing of spikes and spike counts of peripheral tactile neurons, resulting in increased neural noise and decreased information about ongoing stimuli. Interestingly, the first spike latencies of a subset of afferents convey information primarily about past stimulation, hinting at a mechanism to resolve ambiguity resulting from mechanical skin properties. The second part of this thesis focuses on using machine learning approaches in a robotics context in order to influence both what data is gathered and how it is represented by maximizing information theoretic quantities. During robotic object manipulation, often not all relevant object features are known, but have to be acquired from sensor data. Touch is an inherently active process and the question arises of how to best control the robot’s movements so as to maximize incoming information about the features of interest. To this end, we develop a framework that uses active learning to help with the sequential gathering of data samples by finding highly informative actions. The viability of this approach is demonstrated on a robotic hand-arm setup, where the task involves shaking bottles of different liquids in order to determine the liquid’s viscosity from tactile feedback only. The shaking frequency and the rotation angle of shaking are optimized online. Additionally, we consider the problem of how to better represent complex probability distributions that are sequentially updated, as approaches for minimizing uncertainty depend on an accurate representation of that uncertainty. A mixture of Gaussians representation is proposed and optimized using a deterministic sampling approach. We show how our method improves on similar approaches and demonstrate its usefulness in active learning scenarios. The results presented in this thesis highlight how information theory can provide a principled approach for both investigating how much information is contained in sensory data and suggesting ways for optimization, either by using better representations or actively influencing the environment

    Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons

    Get PDF
    Although information in tactile afferent neurons represented by firing rates has been studied extensively over nearly a century, recent studies suggest that precise spike timing might be more important than firing rates. Here, we used information theory to compare the information content in the discharges of 92 tactile afferents distributed over the entire terminal segment of the fingertip when it was contacted by surfaces with different curvatures and force directions representative of everyday manipulations. Estimates of the information content with regard to curvature and force direction based on the precise timing of spikes were at least 2.2 times and 1.6 times, respectively, larger than that of spike counts during a 125 ms period of force increase. Moreover, the information regarding force direction based on the timing of the very first elicited spike was comparable with that provided by spike counts and more than twice as large with respect to object shape. For all encoding schemes, afferents terminating close to the stimulation site tended to convey more information about surface curvature than more remote afferents that tended to convey more information about force direction. Finally, coding schemes based on spike timing and spike counts overall contributed mostly independent information. We conclude that information about tactile stimuli in timing of spikes in primary afferents, even if limited to the first spikes, surpasses that contained in firing rates and that these measures of afferents’ responses might capture different aspects of the stimulus

    Active Estimation of Object Dynamics Parameters with Tactile Sensors

    Get PDF
    The estimation of parameters that affect the dynamics of objects—such as viscosity or internal degrees of freedom—is an important step in autonomous and dexterous robotic manipulation of objects. However, accurate and efficient estimation of these object parameters may be challenging due to complex, highly nonlinear underlying physical processes. To improve on the quality of otherwise hand-crafted solutions, automatic generation of control strategies can be helpful. We present a framework that uses active learning to help with sequential gathering of data samples, using informationtheoretic criteria to find the optimal actions to perform at each time step. We demonstrate the usefulness of our approach on a robotic hand-arm setup, where the task involves shaking bottles of different liquids in order to determine the liquid’s viscosity from only tactile feedback. We optimize the shaking frequency and the rotation angle of shaking in an online manner in order to speed up convergence of estimates

    Edge orientation signals in tactile afferents of macaques

    Get PDF
    The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic

    Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    Get PDF
    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady-state conditions, we used an own developed testing equipment based on gravimetric determination of mass loss of rubber test specimen to investigate the influence of rubber powder content on dynamic wear depending on varying impact energy levels. Incorporation of SBR rubber powder in SBR rubber compounds increases wear. With increasing rubber powder content the wear at steady-state conditions progressively increases. However, the level of wear at dynamic loading conditions increases only once, but stays constant subsequently even with contents of incorporated rubber powder

    Malleability of the cortical hand map following a finger nerve block

    Get PDF
    Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand\u27s fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping
    corecore